Session: File System and Commands Topic: Numbering Systems

Daniel Chang

Number vs. Numeral

- What is the difference between a number and a numeral?

- A "Numeral" is a written representation of the concept of a "Number" of some objects

Analogy

- Coins can be thought of a symbolic representation of some "Number" of cash

- We make change for a given "Number" ("Quantity") using some combination of Coins with various values
- How do we use "Numerals"?

Decimal Numbering System (Base 10)

Column Values	1000	100	10	1

- Each column has a value (ones, tens, hundreds)
- Actual column value is base to an exponent (hence base-10)

Column Values	1000	100	10	1
	$=10^{3}$	$=10^{2}$	$=10^{1}$	$=10^{0}$

General Numbering System (Base X)

Actual Values	X^{3}	X^{2}	X^{1}	X^{0}
Possible Digits	0 to (X-1)	0 to $(\mathrm{X}-1)$	0 to $(\mathrm{X}-1)$	0 to $(\mathrm{X}-1)$

- Any column can only count up to ($\mathrm{X}-1$), because one more would roll over to the value of the next column (to left)

Common Bases

Base	Common Name	Representation	Digits
10	Decimal	$(N)_{10}$	$0-9$
2	Binary	$(N)_{2}$	$0-1$
8	Octal	$(N)_{8}$	$0-7$
16	Hexadecimal	$(N)_{16}, 0 \times N$	$0-9$, A-F

Binary

- The numbering system using only zeroes and ones is called "Binary"
- A single binary digit ("0" or "1") is a "bit"
- Can use varying number of bits to create different patterns to represent larger numbers of different "things" (letters, etc.)

Binary Numbering System

- Binary is the numbering system used in computers
- Here bits are used to represent actual numeric values
- For any pattern of bits, each position is given a value and a "1" means you include the value while a " 0 " means you do not

Column Values	8	4	2	1
Digits	1	0	1	1
Total	$1^{*} 8$	$0 * 4$	$1^{*} 2$	$1^{*} 1$
Quantity				
	8	+4	+2	+1

- The right-most digit in a binary number is always worth "1"
- Each other column has a value that is two (2) times the column to the left
- Actual column value is the base " 2 " to an exponent
- Hence "binary" is also called "base-2"

Column Values	8	4	2	1
	$=2^{3}$	$=4^{2}$	$=2^{1}$	$=1^{0}$

What quantity of objects is represented by the binary numeral:

- $(1)_{2}$
- $(101)_{2}$
- (000000001001) ${ }_{2}$
- $(11001)_{2}$

Hexadecimal

- Hexadecimal (base-16) is another numbering system used in computers
- Each single digit position can have up to 16 different values (compared to 10 or 2)
- Each single digit is represented by (0-9) and then (A-F)
- The right-most digit in a hexadecimal number is always worth "1"
- Each other column has a value that is sixteen (16) times the column to the left

Column Values	4096	256	16	1	Quantity
Digits	0	0	2	A	
Total	0 * 4096	0*256	2*16	10 * 1	
	0	+ 0	+ 32	+ 10	$=(42) Q^{2}$

- Each Hexadecimal digit is equivalent to the value of four (4) binary digits, and you can easily convert between the two
- You must have exactly four (4) binary digits for one (1) hexadecimal digit

Hex	0	0	2	A
Quantity $=(42)_{Q}$				
Binary	0000	0000	0010	1010
$=(42)_{Q}$				

- Hexadecimal numerals are often indicated using "0x"
$0 x b 3 f d$
$0 \times F F$

What quantity of objects is represented by the hexadecimal numeral:

- $0 x 4$
- 0xB
- 0x001F

What is the binary equivalent to:

- 0x 0032 B9A5

Conversion

- First convert numeral to quantity (number) by adding up amounts of column values

Column Values	1000	100	10	1	
$(13)_{10}$	0	0	1	3	
Total	0	0	$1^{*} 10$	$3 * 1$	Quantity
			10	+3	$=(13)_{Q}$

- Then convert quantity to target base by selecting amounts from each column, starting with largest possible
- Similar to making change in a very unusual coin system

Column Values	512	64	8	1	Base-8
$(13)_{\mathrm{Q}}$	0	0	1	5	
Total	0	0	$1 * 8$	$5 * 1$	
Remain			$=5$	$=0$	

Tips

- Decimal numerals are essentially equivalent to the quantity (because we think in decimal)
- Bases that are multiples of each other have direct correspondence between digits, so can convert directly between bases

Bases

base $^{\text {base }}$	base 6	base 5	base 4	base 3	base 2	base 1	base 0	base $^{-1}$	base $^{-2}$	base $^{-3}$	
2	128	64	32	16	8	4	2	1	0.5	0.25	0.125
8	-	-	32768	4096	512	64	8	1	0.125	0.015625	-
16				65536	4096	256	16	1	0.0625	-	-

Conversions

Quantity (Value)	Numerals				
	base-10	base-2	base-8	base-2	base-16
0	0	000	0	0000	0
1	1	001	1	0001	1
2	2	010	2	0010	2
3	3	011	3	0011	3
4	4	100	4	0100	4
5	5	101	5	0101	5
6	6	110	6	0110	6
7	7	111	7	0111	7
8	8	1000	10	1000	8
9	9	1001	11	1001	9
10	10	1010	12	1010	A
11	11	1011	13	1011	B
12	12	1100	14	1100	C
13	13	1101	15	1101	D
14	14	1110	16	1110	E
15	15	1111	17	1111	F

Examples

Given the numeral $(27)_{10}$, what is the equivalent numeral in

- Binary
- Base-16

Given the numeral (34) ${ }_{8}$, what is the equivalent numeral in

- Base-10
- Base-2, which is then equivalent to what Decimal numeral?
- Base-2, calculated in less than 2 seconds

What is the binary equivalent to:

- $(\text { F9C5 })_{16}$

Mathematically
$(27)_{10}=(?)_{2}$
$=(?)_{16}$
$(34)_{8} \quad=(?)_{10}$
$=(?)_{2} \quad=(?)_{10}$
$=(? ?)_{2}$
$(\text { F9C5 })_{16}=(?)_{2}$

